
Nginx & PHP-FPM Performance Tuning on
Ubuntu VPS

Executive Summary
Running PHP applications efficiently on a Linux VPS requires systematic validation, tuning, and
iterative optimization. This tutorial provides a practical, engineering-focused guide to testing and
tuning PHP memory limits, OPcache, Nginx FastCGI caching, kernel parameters, and
application-level caching. It is tailored for Ubuntu-based VPS environments commonly used in
engineering consulting, SaaS, and SME production workloads.

The approach follows a layered optimization strategy:

1. Verify and baseline the stack

2. Tune PHP memory and PHP-FPM process management

3. Enable and optimize OPcache

4. Configure Nginx caching and workers

5. Apply compression, HTTP/2, and TLS optimizations

6. Tune kernel and network parameters

7. Add database and application-level caching

8. Measure, validate, and iterate under load

1. Prerequisites and Baseline Setup

1.1 Access and Stack Verification

Log into the VPS using SSH with sudo privileges:

ssh user@your-vps-ip

Verify installed components:

nginx -v
php -v
mysql --version

1.2 Install Required Packages (Ubuntu)
sudo apt update && sudo apt install -y \
nginx php-fpm php-mysql php-opcache php-redis \
mariadb-server redis-server htop curl

1.3 Backup Configuration Files
sudo cp -r /etc/nginx /etc/nginx.bak
sudo cp /etc/php/*/fpm/php.ini /etc/php/*/fpm/php.ini.bak

1.4 Create a Test PHP File
echo "<?php phpinfo(); ?>" | sudo tee /var/www/html/info.php

Access via browser:

http://your-vps-ip/info.php

Security note: Remove this file immediately after testing.

sudo rm /var/www/html/info.php

1.5 Baseline Monitoring
htop
free -h
nginx -V

Record baseline CPU, RAM, and request latency before tuning.

2. Testing and Tuning PHP Memory Limits

2.1 Identify Current Memory Limit

Check memory_limit in phpinfo() (default often 128M).

2.2 Stress Test PHP Memory

Create a memory stress test:

<?php
$data = [];
for ($i = 0; $i < 2000000; $i++) {
 $data[] = str_repeat('x', 1024);
}
echo memory_get_peak_usage(true)/1024/1024 . " MB";

Increase loop count until a fatal error appears:

Allowed memory size exhausted

2.3 Adjust PHP Memory Limit

Edit:

sudo nano /etc/php/*/fpm/php.ini

Recommended guidelines:

VPS RAM memory_limit
2 GB 128–256M
4 GB 256–512M
8 GB+ 512M–1G
Example:

memory_limit = 512M

Restart PHP-FPM:

sudo systemctl restart php*-fpm

Target: <70% total RAM usage under peak load.

3. Enabling and Optimizing OPcache
OPcache significantly reduces PHP execution time by caching compiled bytecode.

3.1 OPcache Configuration

Edit php.ini:

zend_extension=opcache.so
opcache.enable=1
opcache.memory_consumption=256
opcache.interned_strings_buffer=16
opcache.max_accelerated_files=10000
opcache.validate_timestamps=0
opcache.revalidate_freq=0
opcache.save_comments=1
opcache.max_wasted_percentage=5

Restart services:

sudo systemctl restart php*-fpm nginx

3.2 Verification

Check phpinfo():

• OPcache enabled: Yes

• Hit rate: >95%

3.3 Benchmarking
sudo apt install apache2-utils
ab -n 2000 -c 50 http://your-vps-ip/test.php

Typical gains: 3–5× throughput improvement.

4. Nginx FastCGI and Static Caching

4.1 FastCGI Cache Configuration
fastcgi_cache_path /var/cache/nginx \
levels=1:2 keys_zone=PHP:100m max_size=2g inactive=60m use_temp_path=off;

location ~ \.php$ {
 fastcgi_cache PHP;
 fastcgi_cache_valid 200 302 60m;
 fastcgi_cache_bypass $http_cookie $arg_nocache;
 fastcgi_cache_use_stale error timeout invalid_header updating http_500;
 fastcgi_pass unix:/run/php/php8.2-fpm.sock;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
}

4.2 Static Asset Caching
location ~* \.(jpg|jpeg|png|gif|ico|css|js|svg|webp)$ {
 expires 30d;
 add_header Cache-Control "public, immutable";
 access_log off;
}

4.3 Validation
curl -I http://your-vps-ip/index.php

Look for:

X-Cache-Status: HIT

5. Core Nginx Worker Optimization
Edit /etc/nginx/nginx.conf:

worker_processes auto;
worker_rlimit_nofile 65535;

events {
 worker_connections 4096;
 multi_accept on;
 use epoll;
}

http {
 keepalive_timeout 30;
 keepalive_requests 1000;
 sendfile on;
 tcp_nopush on;
 tcp_nodelay on;
 client_max_body_size 100m;
 server_tokens off;
}

Apply:

nginx -t && sudo systemctl reload nginx

Result: ~2× concurrency improvement on multi-core VPS.

6. Compression, TLS, and HTTP/2

6.1 Gzip Compression
gzip on;
gzip_vary on;
gzip_proxied any;
gzip_comp_level 6;
gzip_types text/plain text/css application/javascript application/json
image/svg+xml;

6.2 TLS and HTTP/2
listen 443 ssl http2;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers ECDHE-AES256-GCM-SHA384:ECDHE-AES128-GCM-SHA256;

6.3 Let’s Encrypt
sudo apt install certbot python3-certbot-nginx
sudo certbot --nginx

Bandwidth savings: 50–70%.

7. Kernel and Network Optimization
Edit /etc/sysctl.conf:

net.core.somaxconn=65535
net.ipv4.tcp_max_syn_backlog=8192
net.ipv4.tcp_fin_timeout=15
net.core.default_qdisc=fq
net.ipv4.tcp_congestion_control=bbr
vm.swappiness=10

Apply:

sudo sysctl -p

Enable BBR:

sudo modprobe tcp_bbr

Expected throughput improvement: 20–50%.

8. PHP-FPM Pool Tuning
Edit /etc/php/*/fpm/pool.d/www.conf:

pm = dynamic
pm.max_children = 20
pm.start_servers = 5
pm.min_spare_servers = 5
pm.max_spare_servers = 10

Rule of thumb:

pm.max_children × memory_limit < 80% of system RAM

9. Database and Application Caching

9.1 Redis Sessions and Object Cache
session.save_handler = redis
session.save_path = "tcp:127.0.0.1:6379"

9.2 MariaDB Optimization
innodb_buffer_pool_size = 2G
query_cache_type = 1
query_cache_size = 64M

Restart services:

sudo systemctl restart mariadb redis-server php*-fpm

10. Monitoring, Load Testing, and KPIs

10.1 Monitoring Tools
tail -f /var/log/nginx/access.log
htop
glances

10.2 Load Testing
wrk -t12 -c200 -d60s http://your-vps-ip/

10.3 Target Metrics

Metric Target
P95 Latency <150 ms
CPU Usage <70%
RAM Usage <70%
OPcache Hit Ratio >98%

Metric Target
FastCGI Cache HIT >90%
Iterate using controlled A/B testing and configuration changes.

Conclusion
By combining PHP memory tuning, OPcache optimization, Nginx caching, kernel tuning, and
application-level caching, Ubuntu-based VPS environments can reliably support high-
performance PHP workloads used in engineering consulting, SaaS, and SME production systems.
This layered methodology ensures predictable scaling, efficient resource usage, and measurable
performance gains.

For global traffic and static offloading, integrate a CDN such as Cloudflare to
further reduce origin load and latency.

	Nginx & PHP-FPM Performance Tuning on Ubuntu VPS
	Executive Summary
	1. Prerequisites and Baseline Setup
	1.1 Access and Stack Verification
	1.2 Install Required Packages (Ubuntu)
	1.3 Backup Configuration Files
	1.4 Create a Test PHP File
	1.5 Baseline Monitoring

	2. Testing and Tuning PHP Memory Limits
	2.1 Identify Current Memory Limit
	2.2 Stress Test PHP Memory
	2.3 Adjust PHP Memory Limit

	3. Enabling and Optimizing OPcache
	3.1 OPcache Configuration
	3.2 Verification
	3.3 Benchmarking

	4. Nginx FastCGI and Static Caching
	4.1 FastCGI Cache Configuration
	4.2 Static Asset Caching
	4.3 Validation

	5. Core Nginx Worker Optimization
	6. Compression, TLS, and HTTP/2
	6.1 Gzip Compression
	6.2 TLS and HTTP/2
	6.3 Let’s Encrypt

	7. Kernel and Network Optimization
	8. PHP-FPM Pool Tuning
	9. Database and Application Caching
	9.1 Redis Sessions and Object Cache
	9.2 MariaDB Optimization

	10. Monitoring, Load Testing, and KPIs
	10.1 Monitoring Tools
	10.2 Load Testing
	10.3 Target Metrics

	Conclusion

